当今,在认知计算时代下的数字化商业模型中,数据带来了新的收入流。如果一个公司能够高效地利用数据,那么认知计算学就能为其带来额外的收入流。
在大数据中,我们叫做“数据货币化”。数据货币化已经在全行业中掀起了改革的浪潮,提高了使用者真实的体验,使更精准的个性化市场和销售策略成为可能,还有效地防止了诈骗的发生。
在成本优化和用户体验提高方面已经显出了巨大的作用,慢慢的变多的公司发现大数据能够为他们带来新的收入流。从银行业到电信业,从能源业到零售业,只要手握数据,这一些企业就能创造出新的盈利点。这一些行业都正在经历着数据价值“货币化”的过程,通过优化数据收集和储存过程获得了更大的盈利空间。
麦肯锡全球研究所的《大数据研究报告》显示,在创新、竞争和生产效率的发展前线上,大数据可以为客户端用户和企业端用户创造7000亿美元的价值。想要获得这一价值,就必须要在技术、基础设施、人力方面有足够的投入,政府也需要给予一定的支持。
利润之前,你必须先找准目标客户,并列出行业竞争对手,分析他们成功的原因。以乐购(Tesco)公司为例,他们要关注零售商和购物商场的运营情况,获取人们的购物活动信息,从而进行物流及库存管理和客户来源地区分析,因为这些分析需要基于真实的客户行为数据。
过程、分析结果和合作伙伴都有一定要求。我们不妨组建一支集中化管理的数据科学队伍,与公司企业合作,分析不同数据集特征,探索应用案例,引进新的业务团队。目前IBM与很多零售公司都建立了合作伙伴关系,这些零售公司用Hadoop和Spark整理数据,形成供给链实时报告,然后将报告卖给批发商。有必要注意一下的是,这一些数据不仅包括销售点的购买数据,还有从银行处获得的交易数据。
在Apache Spark和Kafka的帮助下,形成报告只需要数小时的时间,正确使用可扩模型可以将整体收入提高25%。分析这些报告可以为公司在客户区分和交叉销售分析方面提供很大帮助。
分享数据时,人们通常会遇到数据被盗用的问题。因此我们该建立明确的问责机制和准入门槛,遵守国家关于数据安全、隐私和自留责任等方面的政策,以确保客户不会对我们丧失信任,也不会触发任何法律和法规的禁区。公司隐私政策必须言简意赅、通俗易懂。
要落实数据货币化战略就一定要选择合适的商业模型,建立有力的战略联盟,找到靠谱的合作伙伴。
很多公司专门做高级大数据服务。如果这一些数据公司能够为客户提供大量有价值的数据,那么就能够达到双赢的结果。
开源技术为公司企业在数据货币化的发展中提供了有力支持。越新的数据,价值越高。Apache Spark和Kafka等技术都能为公司可以提供快速的实时数据分析,这 种数据处理方式和管理方式是前所未有的。
理想的大数据环境是由开放标准驱动的,并且是鼓励合作的。Hadoop、Spark和IBM Watson等大数据平台可以为数据货币化战略奠定坚实的基础,帮企业迅速地实现数据的货币化。
新闻推荐
【2025-02-05】
【2025-02-05】
【2025-02-05】
【2025-02-03】
【2025-02-03】
【2025-02-03】
【2025-02-01】
【2025-01-31】
【2025-01-31】
【2025-01-31】
【2025-01-31】
【2025-01-30】